Kingdom of Maplewood is a beautiful country comprising of a lot of small islands of different areas. All the islands are in a straight row. King Rosewood is getting old and has decided to divide the islands among his two sons - Eric and Finn. Luckily, the total number of islands is even. He has also decided a few rules for the division of islands:
i) Eric and Finn will be given alternate turns to choose the islands
ii) They can only choose one island at a time from either the beginning or the end of the row of islands.
iii) Once an island is chosen by someone,it cannot be chosen by other person.
Suppose you are Eric and you are given the first choice. Find out the maximum area you are sure you can pick.
Detailed Analysis
so basically There are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.
1. Would you rather go first or second? Does it matter?
2. Assume that you go first, describe an algorithm to compute the maximum
amount of money you can win.
1st Approach (whether n is even or odd)
if we sort all the coins assume we have array of denominations then it doesn't matter coin odd or even if i start the picking 1st i will definitely win because i will always start 1st or last depending upon sorting.
Although Algorithm will give make sure us that we will win & get the maximum sum but still it don't give us optimal solution don't believe see below.
Time Complexity O(nlogn) So Not Efficient Can we do better.?
2nd Approach (Greedy Approach )
1. Count the sum of all coins that are odd-numbered. (Call this A)
2. Count the sum of all coins that are even-numbered. (Call this B)
3. If A > B, take the left-most coin first. Choose all odd-numbered coins in
subsequent moves.
4. If A < B, take the right-most coin first. Choose all even-numbered coins in subsequent moves. 5. If A == B, you will guarantee to get a tie if you stick with taking only even-numbered/odd-numbered coins. lets run this for 3 2 2 3 1 2 A=3+2+2=7 B=2+3+1=6 A>B so get maximum money that we can make is 7 unit.
although we are able to decrease the time to O(n) to O(nlogn) but still we are sure that we wont get the optimal solution because there can be a test case for which above algo will fail although we will win but won't get the optimal solution .e.g maximum money
Above
Take a Counter test case 3 2 2 3 1 2
A pick left 3 B has two choice left & right 2 no matter what he choose A will choose 2 then we have 2 3 1 left in array so B will definitely choose 2 because he don't have any choice so then a will choose 3 thus making a sum of 3+3+2=8 which more money then what we got in last solution .
So what to do ? we need an efficient algorithm in terms of minimum time & space that can run on big data set as well...yes its sounds like DP..but how we will come up recursive solution , where is overlapping occurs ?
let me explain say we have an array denoted by A1...Ai.....Aj...An .as we always start from any of the end we will come up in middle after some inputs & lets say we are at Ai.....Aj.in array as all before Ai & all after aj have counted by us isn't it.??.
so The remaining coins are { Ai … Aj } and it is your turn. Let P(i, j) denotes the maximum amount of money you can get. the question comes Should you choose Ai or Aj?
so we have two option every time lets choose Ai first then remaining have A(i+1)...Aj for opponent , as he is smart as much you are he will also choose best to maximize the money. so the maximum amount he can get is P(i+1..j).
so lets say we have already computed some for i..to..j denoted by sum(i..j)
so when you choose Ai then maximum amount you can get is say p1
p1=sum(i..j)-P(i+1...j);
& when you choose Aj then opponent have maximum sum denoted by p(i+1..j-1)
then maximum amount you can get is say p2
p2=sum(i...j)-P(i+1...j-1)
then optimal solution can be founded as as we said earlier maximum amount of money we can get when we are in range A[..Aj is denoted by p(i,j)_
P(i, j) = max { P1, P2 }
= max { Sum{Ai ... Aj} - P(i+1, j),
Sum{Ai ... Aj} - P(i, j-1)}
or we write
P(i, j) = Sum{Ai ... Aj} - min { P(i+1, j), P(i, j-1) }
Most Efficient Solution
There is another solution which does not rely on computing and storing results of Sum{Ai … Aj}, therefore is more efficient in terms of time and space. Let us rewind back to the case where you take Ai, and the remaining coins become { Ai+1 … Aj }.
You took Ai from the coins { Ai … Aj }. The opponent will choose either Ai+1 or Aj. Which one would he choose?
Let us look one extra step ahead this time by considering the two coins the opponent will possibly take, Ai+1 and Aj. If the opponent takes Ai+1, the remaining coins are { Ai+2 … Aj }, which our maximum is denoted by P(i+2, j). On the other hand, if the opponent takes Aj, our maximum is P(i+1, j-1). Since the opponent is as smart as you, he would have chosen the choice that yields the minimum amount to you.
Therefore, the maximum amount you can get when you choose Ai is:
P1 = Ai + min { P(i+2, j), P(i+1, j-1) }
Similarly, the maximum amount you can get when you choose Aj is:
P2 = Aj + min { P(i+1, j-1), P(i, j-2) }
Therefore,
P(i, j) = max { P1, P2 }
= max { Ai + min { P(i+2, j), P(i+1, j-1) },
Aj + min { P(i+1, j-1), P(i, j-2) } }
Although the above recurrence relation could be implemented in few lines of code, its complexity is exponential. The reason is that each recursive call branches into a total of four separate recursive calls, and it could be n levels deep from the very first call). Memoization provides an efficient way by avoiding re-computations using intermediate results stored in a table. Below is the code which runs in O(n2) time and takes O(n2) space.
Working Code:
#include
#define MAX(A,B) ((A>=B)? A: B)
#define MIN(A,B) ((A7))
return 0;
if (P2[i][j] == 0) {
counter ++;
P2[i][j] = MAX(A[i] + MIN(maxMoney2(A, P2, i+2, j), maxMoney2(A, P2, i+1, j-1)),
A[j] + MIN(maxMoney2(A, P2, i+1,j-1), maxMoney2(A, P2, i, j-2)));
}
return P2[i][j];
}
int main()
{
int value;
value = maxMoney2(coin_input, P2, 0, 5);
printf("The max money is %d, total calculation: %d\r\n", value, counter);
}
Time Complexity O(N^2)
Space Complexity O(N^2)
Run Here https://ideone.com/l3E3x
No comments :
Post a Comment