For example, if k1 = 10 and k2 = 22, then your function should print 12, 20 and 22.
Algorithm:
1) If value of root’s key is greater than k1, then recursively call in left subtree.
2) If value of root’s key is in range, then print the root’s key.
3) If value of root’s key is smaller than k2, then recursively call in right subtree.
#include
/* A tree node structure */
struct node
{
int data;
struct node *left;
struct node *right;
};
/* The functions prints all the keys which in the given range [k1..k2].
The function assumes than k1 < k2 */
void Print(struct node *root, int k1, int k2)
{
/* base case */
if ( NULL == root )
return;
/* Since the desired o/p is sorted, recurse for left subtree first
If root->data is greater than k1, then only we can get o/p keys
in left subtree */
if ( k1 < root->data )
Print(root->left, k1, k2);
/* if root's data lies in range, then prints root's data */
if ( k1 <= root->data && k2 >= root->data )
printf("%d ", root->data );
/* If root->data is smaller than k2, then only we can get o/p keys
in right subtree */
if ( k2 > root->data )
Print(root->right, k1, k2);
}
/* Utility function to create a new Binary Tree node */
struct node* newNode(int data)
{
struct node *temp = new struct node;
temp->data = data;
temp->left = NULL;
temp->right = NULL;
return temp;
}
/* Driver function to test above functions */
int main()
{
struct node *root = new struct node;
int k1 = 10, k2 = 25;
/* Constructing tree given in the above figure */
root = newNode(20);
root->left = newNode(8);
root->right = newNode(22);
root->left->left = newNode(4);
root->left->right = newNode(12);
Print(root, k1, k2);
getchar();
return 0;
}
Output:
12 20 22
Time Complexity: O(k + Logn) where k is the number of keys in tree in the given range and n is the total number of keys in tree.
No comments :
Post a Comment